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VARIANCE REDUCTION FOR REGENERATIVE SIMULATIONS, I:

INTERNAL CONTROL AND STRATIFIED SAMPLING FOR QUEUES

by
|
E i 3
o
o Donald L. Iglehart Peter A. W. Lewis
o Stanford University Naval Postgraduate School
i1 Stanford, California Monterey, California
: ABSTRACT

We discuss two methods for reducing the variance of
estimators of parameters of limiting distributions of stable
stochastic processes in simulations. The methods are discussed
in the context of the simple GI/G/l1 queue. Of the two methods
one, which we call an internal control variable, gives a vari-

ance reduction which is roughly uniform over values of the

parameters of the process and, in particular, works well for

values of the traffic intensity, close to 1.
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INTERNAL CONTROL AND STRATIFIED SAMPLING FOR QUEUES

by

Donald L. Iglehart and Peter A. W. Lewis

|

% 1. Introduction and Summary

} Simulators are frequently faced with the task of estimating
a parameter associated with the limiting distribution of a stochas-
tic process which is being simulated. A methodology based on
regenerative processes for obtaining point estimates and confidence

intervals for such parameters has recently been developed in Crane

and Iglehart (1974a,b), (1975a,b) and Iglehart (1975), (1976a,b).
In this paper we shall indicate two techniques, internal control
variables and internal stratified sampling, which might be used in
conjunction with the regenerative method for obtaining additional
! variance reduction for the estimates. To illustrate these tech-
niques we shall restrict our attention in this paper to the GI/G/1

gueue. Other applications of these ideas will be dealt with in

future publications, as well as uses of the regenerative property
which may possibly be more suited for obtaining variance reduction
for estimates in stable stochastic processes.

In the GI/G/1 gueue we assume the zeroth customer arrives

! at time to==0, finds a free server, and experiences a service

time Vo The nEl'—l customer arrives at time tn and experiences

a service time v . Let the interarrival times t -t _,=u,

n-1 n
n>1. Assume the two sequences {vn: n=>0} and {un: n>1} each

G
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consist of independent, identically distributed (i.i.d.) random
variables (r.v.'s) and are themselves independent., Let E{vn}=
u-l, E{un}=)\_l, and p=A/u, where O0<A,u<®, Thus u has
the interpretation of the mean service rate and ) has the inter-
pretation of the mean interarrival rate. The parameter p is

called the traffic intensity and is the natural measure of conges-

tion for this system. We shall assume that p<1l, a necessary

and sufficient condition for the system to be stable.

While many characteristics of interest can be estimated
using the regenerative method, we shall restrict our attention to i
the waiting time of the n9 customer, Wn (time from arrival to
commencement of service). To obtain a representation for the pro-
cess {Wn: n20} 1let X =

u, and set So=0, sn=x +...+Xn,

Vn-1" 1
n=1l. The following well-known recursive relationship exists for

the W 's:
n

+

W, =0, W = [Wn+x 1", n=0,

n+l n+l

By induction, we also have
W= max{Sn-Sk: k=0,1,...,n}, n=0.

Using the strong Markov property of the process {Sn: n=0}
it can be shown that there exists a sequence of integer-valued r.v.'s
{Bk: k =20} such that By =0,

and W, =0 with proba-

By < Br+1r By
bility one. 1In other words, the customers numbered Bk are those
lucky fellows who arrive to find a free server and experience no wait-
ing in the queue. The fact that there exists an infinite number of

such customers in the GI/G/1 queue is a direct consequence of the

bt oo o = e e b o R C e m



assumption that p<1l and the strong law of large numbers. If

5
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we let @, = Bk- Bk-l' k=1, then Oy represents the number of
] E customers served in the k-tl'- busy period (b.p.) and they are
| numbered {Bk_l,Bk_1+l,...,Bk-1}.
i Next define the sequence (Y, : kz1} by
27
: Y, = '_2 Wj,
3=By_1
i the sum of the waiting times in the kE b.p. Since the gueue
i
§ j is stable for p<1l we have wn = W as n-+«, where = denotes
9 9
j ; weak convergence.
i &
: ) ; ] OQur goal is to estimate E{W]} by simulation.
ii\ b It is known that E{W} <« if and only if E{(XI)Z} <®, We
- shall, for simplicity, assume that E{va} <o which will guarantee
b . . . .
i1 that E{W} <, The regenerative simulation method is based on the
analytic results that the sequence {(Yk,ak): k=1} is independent and
5 ¥ 8 identically distributed and E{w} =E{Yl}/E{al}, the ratio of two
‘:Q }‘ means. This suggests using the ratio of estimates of E(Yl) and
: n
et = E(al) to estimate E(W). Thus, if we let Y(n)=% ) Y, and
e ‘ _ n k=1
’% u a(n) =% ) Oy s where n now denotes the number of cycles observed,
£y .\ H k=1
py T then a ratio estimate of E(W), for example, is
3 Hi-
§ 15 _ =5 -
b ¢ W(n) - Y(n)/a(n) Y (101)
k

(In the sequel we drop the dependence on n unless necessary.)
Now let zk =Yk -E{W}ak, k=21, and note that the sequence

{zk: k=21} is i.i.d. and E{Zk}=0. We assume the variance of Zyo

] TR IO dtamn s
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E{Zi} = g2 = var{Yk}-Z cov{Y k}E{W}4-var{ak}E2{W} (1.2) 1

k'®

is finite and positive. Then one can easily show that as n-+

PRI

n1/2 (% (n) /& (n) ~E{W}]
07E{a1}

= N(0,1), (1.3)

where N(0,l1) is a mean zero, variance one normal random variable.
This result yields a confidence interval for E{Wl} provided we
can estimate o/E{al}. A variety of estimates have been studied

and are reported on in Iglehart (1975a). Here we just mention two.

3 T M WV P TP N | s

The so-called classical estimate for o/E{al} is given by

& _ _ G/ G /oy211/2 =
Sl = [Sll 2512(Y/u)-+822(Y/a) ] /a,
3 3 ¥ L
where S11 is the sample variance of the Yk s, 822 of the a,'s,
and S12 the sample covariance of the Yk's and ak's.
The second estimate of o/E{al} is the jackknife estimate
which is defined to be
n
5, =1 ) (e.-e)z/(n-l)]l/z,
L& i
i=1l
73 R 5= 7
where 6. =n(Y/a) - (n-1) ( Y./ a.), l=i=n, and 6== 8,
* jAi ) 5F t . ) B
is called the jackknifed estimator of E(W). Both Sl and 52

are strongly consistent.

The jackknifing technique is known to work particularly
well as a confidence interval estimate for ratios; for a large
number of cycles n the computational problem is severe, but in

that case the technique using (1.3) and §, works well. For

1
details see Miller (1974) and Iglehart (1975).




The problem addressed in this paper is how to apply variance

reduction techniques with the ratio estimator W(n). 1In almost

all practical situations, where in particular one might want to

1

r T
-

PR o s
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compare the mean waiting times of two different queueing systems

] i : (Iglehart (1976)), there is a premium on achieving the minimum
possible variance for the estimation in the given computing time

}
i (number of cycles allowed). Variance reduction techniques for

EV ;: - simulations are discussed in Kleijnen (1974) and Gaver and Thompson
4 i - {1973), but there are difficulties in applying these to ratio
} é l’ estimates and regenerative systems. In particular variance reduc-
F ’ f : tion via the usual control variable techniques is difficult. A
X : l. variation of this technique, which we call internal control variables
x ; . and which is generally useful for ratio estimates, is introduced
% : and shown to give considerable variance reduction for the point esti-

mate W(n). Another technique, internal stratified sampling, is also

explored. It is a natural technique to use but appears to be diffi-

ARy
]

cult to use with ratios. Moreover, it becomes less and less

effective as p=+1, while the internal control technique holds up

well for p <close to 1. In fact the internal control variables

described here for an M/M/1 queue give a variance reduction which

is fairly uniform for all values of u and ratios p<1l. Better

results can be obtained for particular cases of the parameter p.
It will also be apparent after the development of the vari-

ance reduction techniques in the next sections that the two tech-

38 ¥
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the estimates after variance reduction has been applied.

L.

hat

I niques for confidence interval estimates discussed above apply to
L
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2. Internal Control

T™wo main methods for variance reduction, antithetic variates

daacic it Kol atghiy
2.

B

and control variables (Gaver and Thompson (1973)) have been put

TET
T T AR T s

forward for use with queues in the non-regenerative situation. Of

these, antithetics has very limited utility beyond the simple M/M/1

IR

situation in which it is patently clear how to generate two reali-

R T S

zations of samples which give negatively correlated estimates.

PR

s ] That scheme for generating negatively correlated estimates does
not work with the regenerative method because the regenerative
blocks in the original realization of the queue and the antithetic

realization get out of synchronization. No alternative way has

o, TR ety ORI T o T TS

‘ been found to utilize antithetic variates with the regenerative
% technique and we feel, along with many computer scientists, that

the technique has limited validity in systems simulation.

The technique of using a control variable and, in particular,

T Y AL g YT TR,

a regression-adjusted control variable (Gaver and Thompson (1973)

p. 587) is much more broadly applicable in systems simulation,

37
e

although it is again difficult to adapt to the regenerative situa- %

R

tion. Briefly, say we are simulating an M/G/l1 queue to estimate

E(W) with the non-regenerative technique of averaging the first

m waiting times to obtain an estimate of the unknown E (W), g
~ l m
W = = Z W.. (2.1)

The same random numbers used to generate the m non-exponentially

i distributed service times are used to generate m exponential

service times for simulating an M/M/1 queue whose input stream




e

is identical to that of the simulated M/G/l1 gqueue. One would

then expect that if the G-distribution is not too different from
the exponential distribution, successive waiting times, say wg,
in the M/M/1 queue realization would be close to (positively
correlated with) the corresponding waiting times wj in the
M/G/1 queue. Consequently, the average of the w5's, say ﬁ;,
will be positively correlated with ﬁm and one can form a new

estimate

W, = Wm*'B(Wé-E(W&)). (2.2)

Now E(ﬁé) is close to E{W'}=p/u(l-p) for m large, so

E(Wm):;E(wm) and the variance of the new estimate will be a min:imum

if
- - w Nu Nl .
8 cov(Wm,Wm)/Var(Wm), (2.3)
in fact
oF d. (W)
W s.d. (W
I - - (1-r2)1/2, (2.4)
wm s.d.(wm)
where
~ &
~ A cov(wm,wm)
r = corr(Wm,Wm) = 5% o5 . (2.5)
m m

There are a number of important points to be noted about
this technique:

(i) It allows one to use known analytical results (such as

the expected value of the limiting waiting time in an
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M/M/1 queue) to reduce the variance of a simulation.
Such use of analytical results is a basic principle of
simulation.
(ii) It can be extended to non-linear controls or to multiple
control by more than one control variable.
(iii) The great art in the technique lies in finding a control

whose mean value is known and which is highly correlated

with the estimator which is being controlled. Thus (2.4)
says that |r| must be close to 0.9 to reduce the stand-

ard deviation Oﬁ to one half of oy
m m

generally is equivalent to reducing the required sample

and this

size for a given precision by a quarter. Controls which
are that highly correlated with the estimate are not
easy to find.

(iv) It is in general too much to ask that the correlation and
variances in (2.3), (2.4), and (2.5) be known analyti-
cally. They, therefore, must be estimated from the
simulation data and this will reduce the variance reduc-

tion which is attained.
Now using this method to control the regenerative estimate
given in the introduction,

W(n) = ¥(n)/a(n),

where n refers to a fixed number of cycles in the queue, one runs
into the same problem of synchronization as with the antithetic

case, namely n cycles in the M/G/1 queue may take a very different

T s M e WO TR e AT TN
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number of waiting times to achieve than are needed for n cycles

PR

i is in the M/M/1 queue. Moreover, the correlation between Yi and
-

Yk will be weak and made even weaker by the use of the ratio

YN S Wleror s s -

estimate. This problem becomes rapidly apparent in simulation
studies of the technique.

The following technique which we have called internal
(within block) control has been developed to overcome this. It
1/ 1 is, in fact, a special case of the very broad technique called

concomitant variables in Gaver and Thompson (1973), p. 588 and

will be illustrated only for point estimation of E(W) and E(c¢).
‘) Its extension to other quantities discussed by Crane and Iglehart
frf (1974a) is immediate in principle, although the control quantities

discussed below may be different.

2.1 Internal Control: Basic Ideas

The idea of an internal control variable is simple. In the
estimate W(n), the averages ¥(n) and o(n) contain n random i
variables Yk and o which are each functions only of the «a

k
interarrival and service times occurring in the kEE cycle (or b.p.)

and are independent of the other interarrival times and service times.

Thus, it is natural to use some function of these Zak random

variables to control each Yk and -

The naive application of this idea is that if we can reduce Y
the variance of both the numerator and denominator Y(n) and a(n) 13
we will reduce the variance of W(n), but we will show that the

situation is more complex than this. We will denote a function of

the random variables in the kEE cycle by C(k) but will generally 3

<
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gr .
. 4 i, drop the index. In general we also use CT(k) to denote a control
i . for the numerator (t ») in the ratio estimator and CB(k) to
’ denote a control for the denominator (bottom).
Typically, C(k), or simply C, could be the difference
between the service time Vg and the time to arrival of the next

k

customer from the arrival of the BkEE customer, namely Hg .
k+1
This difference has, in a GI/G/1 dqueue, a known mean

V7 ; unl-k—l “and large positive values of this function C(k) corre-
spond to large values of Yk and ak, and vice versa. We return
to specific control variables and their computation in the next

o } N sub-section.

;r‘ . Note that one can control either the top or bottom of the

\ : ratio estimator, or both; to fix ideas assume we control the top

> o and have, in general, an internally controlled estimate

: , o +

S 1 Y, +BL(CpE(Cp)) )
Wop(n) = ' (2.6)

[2]]

where BT’ as in the usual control estimation technique, is fixed

so as to minimize var(WCT(n)). In practice it is usually esti-

[N

mated from the simulation data.
.. Now the quantity o2?/E?{a}, where 02==E{Z§} is given at
(1.2), is just the leading term in the asymptotic expansion for the
variance of the ratio estimator W(n), and carries over to the

more complicated situation (2.6) to give (asymptotically as n »w)

2

- n var(WCT(n)) + o% = {g%%%} {var(Y'+8TC%—a')
2
- JE(Y) Vot 1
I = {m} Var{(Y o ) +BTC }; (2.7)
10
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where Y'=Y/E{Y}, a'=oa/E{a}, and C,i,=CT/E{Y}. For a

derivation of this result see Cramér (1946), p. 354, eq. (27.7.3).
It follows from (2.7), as before, that to minimize the

asymptotic variance of W_ . (n) we must take

CT

cov(Y'-a',C%) cov(Y,CT) E(Y) cov(a,CT)

“Bp = var (Cy) = var (Cp) TE(a) Var(CT) :

(2.8)

But most importantly we notice that C+ must be highly correlated
with the difference Y'-a'. To achieve this is much more difficult
than finding a quantity which is highly correlated with either of
Y or o, simply because Y and o are highly correlated and
increase together. 1In particular if a=1, which has a high
probability if p, the traffic intensity is small, then Y=0,
Note, too, that E(W) =E(Y)/E(a), the gquantity we are trying
to estimate in the simulation, appears in (2.8) for the top control
regression coefficient. Also similar equations to (2.7) and (2.8)
pertain to the case where the bottom of the ratio is controlled
(in this case a), and simultaneous equations can be derived for

B and BB if both top and bottom are controlled. The additional

T

complexity in estimating B8 and BB does not seem to be justi-

T
fied by simulation results (discussed later) which also show that
if only one control is used there seems little to choose in terms
of reduction achieved between putting it on the top of the bottom.

In both cases the control must be highly correlated with the

difference between Y and a.

11
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The above results are generally applicable for any regenerative
process in which ratio estimates are used. The choice of C is,
of course, the art in the design of a simulation with variance
reduction and is considered for the GI/G/1 and specifically the

M/M/1 queue in the next section. 1In all cases this choice is

limited by one's ability to compute analytically E(C).

2.2 Internal Control: Design Considerations

We discuss here the design of internal controls for the
M/M/1 queue, the ideas being applicable to the GI/G/1 case with
the proviso that the computations might be considerably more diffi-
cult. Simple computations of E(C) are given here and more diffi-
cult ones in the Appendix; we do not distinguish between bottom
and top controls, since both must be correlated with the difference
Y- 0o, and we drop consideration of cycle number, since all variables
are within the cycles which have identical structure.

Again, we are considering estimation of E (W), but of the
many possible controls, those listed below would probably work as
well with other functions of W, e.g. percentiles. The controls
are listed roughly in order of complexity of computation and of
supposed correlation with Y~ a. This can usually only be guessed
at and generally the more elaborate controls which might have
greater correlation with Y- o are more difficult computationally.

Superscripts on C are labels to differentiate the controls.

We have discussed above the difference X whose moments

1~ Vo™ Y1
are simple to compute., Then we have

12
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C =X, =W, =0 if a=1 (2.9)

= xl if a

(l))

v

2. (2.10)

It is easy to compute E(C for M/G/1 Qgqueues and
possible for the GI/G/1 gueue. Thus, for the M/M/1 case we

have, using the Markov property of the exponential distribution,

P{v0<ul} = P{a=1}

Io [1-F (y)1dF _(y)

o [Tem M (yeMYy gy = L

joe (ue )dy T (2.11)
which goes from 1 to 1/2 as p=A/u goes from 0 to 1; furthermore,

P{a=2} = l-—1—=

p
3o I+p ° (2.12)

Now given that X, = Vo T g is greater than zero, the

1
excess Vi, - u; is distributed as an exponential random variable

with parameter u. Therefore

ey 2 oox L 1_1
E(x)) = B(c') = ox g+ o b = 2(xh) - (2.13)

The variance of C(l)

can also be computed.

One would generally like to obtain more correlation of C
and Y-a when Y is large, and one feels this can be done by
bringing in the second waiting time. Thus we have as control

candidates

ey, ' 1w v:?-v“:‘l ST

Y




PR
. f ;
3 = 0, if a=1
J 3 l c(2) . . (2.14)
= X. +X., if a =z 2;
l‘ l 2
- (3) _ ¢+ + .
oE l c (xl+x2) = W2, (2.15)
Poos
.
. l O if a=1 |
g c = N N N (2.16) 3
; : I X1+ (X1+X2) ’ if a =z 2.
L
- The control c(¥) is wy =0 if a=1, it is Wy+W, if
" ¢ ;
e 3 I a=2, and it is w0+w1+x; if a=23. It is an attempt to capture
: the effect of the first two waiting times without the additional
I computational complexities involved in computing the expectations
S G I of ¢® ana @, j
F L
P‘ Simulation results show that c(3 and c(4) give very
: I little more control than C(2) for which, in the M/M/1 case,
g { we have j
t E(c'?)) = 0+ E (X]+X; ,22)
- 5 +oo4+ 1 ot
e
P =0 1 1yt
L sl B0 1 X]> o)
.;,
; = Pyl +} =P f1, 0 1
é I 1+D{U+E(x2) l+p{u+l+p u} (2.17)
I using (2.12) and the fact that X; is independent of XI. We use
3
* the notation E{X,A} for E{XlA}, where X is a random variable,
% I A an event, and 1, the indicator function of A.
b
i ‘ Similar computations go through for C(3) and C(4); from
L
g' these we will need later the following illustrative result (M/M/1
i
I case).
[ 14
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_ + +
P{a=2} = P{Xl>0,x1+v15u2}
= P{X7>0,v, -u +v su,}
177770 "1 172
2
= L2 =P ._ K = P

where Y, the sum of two exponential () random variables, has
a Gamma{u,2) distribution.

From this we also get that

>al = 1.1 _ p_ p2(2+p)
P{az3} =1 ¥~ (Fp)° ~ (I%0)° ° (2.19)

Now, none of these four controls is specifically designed
to be correlated with the difference Y:-a. As a result they work
well for py and A such that Y takes on values much larger
than a.

To fix this one might try

c® - W _y, i=1,2,3 or 4, (2.20)

since the mean E(C(S)) is easily calculated if E(C(i)) is
known for i =1,2,3, or 4, and E(a) is known. But E(a) is
1/(1-p) for any M/G/1 gqueue (Cohen, 1969); approximations for
the GI/M/1 case are discussed in the Appendix.

There is an additional problem of dimensional stability

involved in using C(s), as with C(l), C(z), C(3), C(4)

, 1in that
E(C(l)) depends on both u and p, while E(a) depends only on
p. Thus control is not uniform across the whole range of param-

eter values.
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To avoid this one use

c(8) = ) _ o/, (2.21)

This, with i=2, was found, in simulation studies, to be
the most successful control variable in that it obtained a variance
reduction which was uniform in p and p (or u and 1) and its
mean value is fairly simple to compute. These simulation results
are discussed in the next subsection.

Note that multiple control variables using any of the above
controls can be used. In particular, one need not take the differ-

c(2)

ence of say, and o/p, but may use a multiple control.

(1)
T

and 842) must be estimated from the simulation data makes the

However, the fact that two regression coefficients, say B8

possible gain in variance reduction of dubious value.
Note also that since all the control comes from within
cycles, there is no reason that the confidence interval estimation
igues referred to in the introduction would not go through
for t.e variance-reduced estimates. This has been verified in

simulation runs.

2.3 Internal Control: Simulation Results

It is not possible to verify analytically what variance
reduction will be obtained via the several internal controls

listed in the previous section, or to get an idea of the magnitude

(1)

of the effect. Even for something as simple as it is diffi-

(1)

cult to compute analytically the correlation between C and
Y-oa for the M/M/1 queue, and this is what is required in the

equation (2.5) to find the variance reduction.

16




+
(e I

Thus, we resorted to simulations to verify the amount of

@ 2 ¥ variance reduction obtained and the relative effectiveness of the

Y
o

- various controls. In the final simulations all runs were performed
on IBM System 360/67 computer using the LLRANDOM package (Learmonth

and Lewis (1973)) which generates random numbers according to the

e e
D

Z 2 scheme given by Lewis, Goodman, and Miller (1969) and exponentially

i distributed random numbers using the Marsaglia "rectangle-wedge-

¢ : If tail" method. Tests of the random number generator are given in
Learmonth and Lewis (1974).

v

? [ Of the extensive simulation checks performed, we give here

only a summary of the conclusions and one detailed tabulation and

. one short tabulation in the case of the most suitable control.

. ¥
" \ . (1) The controls C(Z), C(3) and C(4) do much better gener-

ally than C(l), with little improvement over C(z)

(3) and C(4). We say generally because results

obtained
by use of C

vary with A and u and their ratio op.

L [4 (2) Subtracting the number of customers served in a busy

:1; [- period generally improves the variance reduction. By making
b : . . . . .

‘9 b it dimensionally stable as in (2.21) with i=2 we obtain a

“ji ; ’ "variance reduction" measured in terms of ratios of standard
f deviations, of approximately 70%, uniformly over A and u.
This is roughly equivalent to halving the number of cycles (b.p.'s)

that one must simulate; (0.7)?~ .5. Much better reductions can

be obtained for smaller p (i.e. p=0.25) by specially designed

(6) (2)

controls; the point is that C using C works even out

W e Ty

at p=0.99, where variance reduction is extremely important.
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Table 1 shows results obtained by simulating an M/M/1 queue
out to n=2000 cycles and replicating the simulation 250 times to
estimate the variance of the estimates W(n), WcT(n), Weg(n),
where we drop the n for convenience. Here, we have specifi-

cally that

Lk

n
(6)
[a, +B8, (C
oy e

1
n

Il e~13

k
WCB(n)

’

_e{c'® 1)

3|

where

(6) (2)

C = C ~a/u. (2.22)
The estimated precision (standard deviations) of the estimates of
E(W) are given in brackets under the estimates.

The results in Table 1 are for p=0.5 and three values of
u; the results are not very different at different values of p. The
case p=0.99 is given in Table 2. The second, third and fourth
columns in the Tables give correlations between the control and
Y~a etc., from which the theoretical variance reduction can be
computed. They are very close to the values given in the next
to last column, from which we deduce that estimating BT and BB
affects the variance reduction only slightly. There is negligible
effect of different values of yu for fixed p=0.5 and fixed
p=0.99.

Note that for the results for p=0.99 given in Table 2, the

variance reduction is 73% (about the same as for p=0.5). For the

18




case where the control is on the top, i.e. for ¥, the variance

reduction is not quite as good for control of a. Note too that

. the estimated values appear in some cases to be at least three or
four standard deviations from the true mean. This is because the
estimates W, WT and WB can be seen from the 100 replications
to be non-normal. In other words, for high p(0.99), the simula-

tion needs to be taken out further than 2000 cycles.
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5 / 3. 1Internal Stratified Sampling
! Another technique for variance reduction which can be
potentially used with the regenerative method is stratified sampling.

For a brief description see Kleijnen (1974), p. 110. In essence

this uses analytical information in the following way.
! If we can stratify or partition a random variable X by

its values (or those of a concomitant variable) into K strata

e wRTp v g

~

v labeled k=1,2,...,K, we can write the mean of X and the sample

mean X as, respectively,

K
u=E(X) = } P E(X | Xe¢ strata k) (3.1)
k=1
(!
. ' n
: s 1 1
X== ] X =-( I X, +...+ x.) (3.2)
? nj= 1 Metr1 strK *
| n, X. n, X.
‘ K
. = Tlﬁ£+'°.+ z Tﬁ-l‘ ’ (3.3)
strl 1 str K K

where n, = number of Xi's observed in strata, and Py is the

1 h probability of being in strata.

Now, if the pk's are known and we substitute them in (3. 3)

gr @ stratified estimate. It will be biased,

since the divisions of the sums in the populations are random; if

for nk/n, we get X_

the numbers observed in each population are controlled and taken
to be npl,npz, etc., we have what is called a proportionally

: 1 sampled estimate ips with

K
Var(xps) = var(X) - E Pk(uk-u)z/n, (3.4)

” k=1

AT ST
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where uk==E{X| X € strata k}. Thus, because of the use of prior

analytic information we always get variance reduction.

The variance of ist is not analytically tractable, but

early studies reported in Kleijnen indicate it is close to (3.4)
if n and all the n.'s are sufficiently large. Our simulation
studies with stratifying o have confirmed this; because of the ease
of computation of P{a=1},P{a=2},P{a=3}, as in section 2.3, it .s
natural to stratify o. Considerable variance reduction is obtained,
especially for smaller values of p, the traffic intensity.
Unfortunately, when the quantity «a is stratified in the
bottom (denominator) of the estimator W(n) very little overall
variance reduction is obtained unless p is small. We do not
understand this lack of variance reduction but apparently the
correlation between the stratified version of a(n) and Y(n)
is reduced. Analytical studies of this effect are very difficult.
It is also possible to use a stratified estimate of «a

in W(n) and to control the top, Y(n), with say cl(e)

c(2)

using

. This works well for small p, but increases the variance

as p approaches 1. Again it is difficult to understand this

effect.
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4. Conclusions and Summary

We have been able to obtain a worthwhile variance reduction
using internal control variables, for the regenerative estimate of

the limiting value of the mean waiting time in an M/M/1 queue.

This reduction is obtained uniformly over all parameter values.

It is fairly certain that the technique will work well with any
GI/G/1 dqueue or other regenerative stochastic processes or systems.
Internal stratified sampling schemes, however, did not work nearly
as well. h%

The techniques can be extended to other stable stochastic
systems, such as the Markov chains considered in Crane and Iglehart
(1974b) . In that case the computation of the mean values of the
controls is simpler because of the structure of the Markov chain.

The main problem in applying the internal control variance
reduction technique seems to lie in the fact that the estimator
proposed by Crane and Iglehart (1974a) involves a ratio of two
random variables, and these are difficult to work with in general.

An alternative which will be considered later is to use the
existence of regeneration points more specifically to obtain vari-
ance reduction with the classical estimator ﬁm given at (2.1).
One advantage which the regenerative estimator W(n) has over
Wm is the ease of obtaining confidence interval estimates or esti-
mates of the precision of W(n) and W(n). This is not a draw-
back if the simulation is large and more than one (say ten or
twenty) realizations of the queue are obtained.

~

To fix ideas note that we can write wm as
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It
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Il ~38
=

l<N§m)

B T TN

mi =, 'k N(m)+1

where N(m) 1is the number of completed busy periods in the queue

in [0,m], Yk as before is the sum of the waiting times in the

k-t-il'—l cycle, and Yﬁ(m)+1 the sum of the waiting times in the last,

incomplete cycle.

Now it is possible to apply internal controls to each Yk
in the sum. Problems arise in estimating the coefficients B8 in
k- / the control because they involve a random sum of random variables.
“r' But it is much easier to find a control C for Yk rather than

the difference Y and also it is still possible to apply

-

k™ %%’
external controls as well as internal controls.

These ideas will be followed up in a later paper.
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APPENDIX

To implement either the internal control or stratified
sampling techniques certain theoretical parameters associated
with the GI/G/1 queue are required. 1In this appendix we shall
indicate the values of these parameters in so far as they can be
calculated. These values are either well-known or easily calcu-
lated. For a reference to the known formulas see Cohen (1969).

We begin with E{al}, the expected number of customers
served in a busy period. For the general GI/G/1 queue recall

that we let Xn=vn- -u and Sn=xl+"'+xn’ for n=1,
with S,=0. Then a1==inf{n>0: SnSO}. The general expression

for E{ai} is given by

e~ 8

E{al} = exp{ n_lP[Sn>0]},

n=1

an impossible expression to evaluate in general. Another useful

expression for E{al} is
E{al} = 1/P{W=01}, (A.1)

where W 1is the stationary waiting time. In the special case of

M/G/1, however, we have

E{o)} = (1+p) .

Now for the que.e GI/M/1 we can use (A.l) and the stationary

distribution of the embedded Markov chain to conclude that

E{a;} = (1-5)77,
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where 6 is the root inside the unit circle of

z-U{u(l-2)} =0

[RISIURERIOEY | ISR S

-su
with U(s) = E{e l}, Re s20, and u; is an exponential (u)

r.v. It is easy to check that =p for M/M/1 queues. Daley (1975)

has recently proposed the approximation to 6 given by

1

¥ = a (1-p)% +2(1-b" yp+ (267 1-1)p2,

where a, = P{ul=0}, E{ul} =1, and b =E{ui}. This approximation
gives good results in a number of examples calculated by Daley (1975)

and may be useful for the purposes of this paper.

'r : N Next we turn to the computation of P{a1=1} and P{a1=2}.

For the GI/G/1l case we have

P{al=l} P{slso}
and

i- P{al=2} = P{sl>o,szso},

both of which can be worked out with a little effort. For the M/M/1

gueue

Pla =1} = (1+p) 7%

and

P{a;=2} = p(L+p) .

For the M/G/1 queue

P{al=l} = V(X))

P -Avb

where V()) =E(e ), and for the GI/M/1 queue
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N3 1;,\5
i1
‘;‘g I P{(ll=l} = l-U(U)r
? §§ where U(s) 1is given above. For the M/Ek/l queue and the Ek/M/l .
: z queue the value P{al=2} can be calculated with some effort. As ]
fi - these expressions are cumbersome they shall be omitted. E
L Next we turn to various partial expectations which are E
% i needed for internal control {
Lo ]
; : i
by s + + = +
: % E{Sl+Sz,alZ2} E{Sl,Sl>0}4-E{Sz,Sl>0} ﬂ
T and i

! E{al,a122} = E{al}-P{al=1}.
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B e - v ‘\ _ o
. .
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In the special case of the M/M/1 queue,

: E{Sl,Sl>0} = p/{u(l+p)},
+ _ P 2 92 -1
\ | B{s3,5)°0) = 2(155) *mmyv 1Y |
h i
and E
P {
. § :
k-1 - Ela,,a,22} = 2p/{(1-p) (1+0)}. ;
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